Chiral Symmetry Breaking and Inhomogeneous States in Deformed Ferromagnets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The general form of chiral terms associated with deformation of a ferromagnet is determined. The possibility of a transition from the helical state to the vortex state is demonstrated for a ferromagnetic rod subjected to elastic torsional strain. In the case of a single screw dislocation, the formation of the skyrmion state due to elastic strains and the helical distribution of magnetization induced by strains in the dislocation core is indicated. The conditions in which a transition from one chiral magnetization distribution to another distribution in an ensemble of identical dislocations are determined.

About the authors

A. A Fraerman

Institute of Microstructure Physics, Russian Academy of Sciences

Author for correspondence.
Email: andr@ipmras.ru
607680, Nizhny Novgorod, Russia

References

  1. I.E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957).
  2. T. Moriya, Phys. Rev. 120, 91 (1960).
  3. A.N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP 68, 101 (1989).
  4. A.N. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).
  5. U.K. R¨oßler, A.N. Bogdanov, and C. P eiderer, Nature 442, 797 (2006).
  6. A.N. Bogdanov and U.K. R¨oßler, Phys. Rev. Lett. 87, 037203 (2001).
  7. B.Binz, A.Vishwanath, and V.Aji, Phys. Rev. Lett. 96, 207202 (2006).
  8. S. Mu¨hlbauer, B. Binz, F. Jonietz et al., Science 323, 915 (2009).
  9. A. Crepieux and C. Lacroix, J. Magn. Magn. Mater. 182, 341 (1998).
  10. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).
  11. A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152 (2013).
  12. M. Bode, Nature 447, 190 (2007).
  13. A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 17031 (2017).
  14. В. Г. Барьяхтар, В. А. Львов, Д. А. Яблонский, Письма в ЖЭТФ 21, 565 (1983).
  15. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
  16. V.I. Fedorov, A.G. Gukasov, V. Kozlov, S.V. Maleyev, V.P. Plakhty, and I.A. Zobkalo, Phys. Lett. A 224, 372 (1997).
  17. A.B. Butenko and U. K. R¨oßler, EPJ Web of Conf. 40, 08006 (2013).
  18. A. Arrott, J. Appl. Phys. 34, 1108 (1963).
  19. K.L. Metlov and A. Michels, Phys. Rev. B 91, 054404 (2015).
  20. K.L. Metlov, K. Suzuki, D. Honecker, and A. Michels, Phys. Rev. B 101, 214410 (2020).
  21. P. Schoenherr, J. Mu¨ller, L. K¨ohler et al., Nature Phys. 14, 465 (2018).
  22. M. Azhar, V. P. Kravchuk, and M. Garst, Phys. Rev. Lett. 128, 157204 (2022).
  23. L. Liu, W. Chen, and Y. Zheng, Phys. Rev. Lett. 128, 257201 (2022).
  24. N.S. Gusev, A.V. Sadovnikov, S.A. Nikitov, M.V. Sapozhnikov, and O.G. Udalov, Phys. Rev. Lett. 124, 157202 (2020).
  25. L.D. Landau and E.M. Lifschitz, Theory of Elasticity, Pergamon Press (1975).
  26. М.О. Катанаев, УФН 175, 705 (2005)
  27. M.O. Katanaev, Phys.-Usp. 48, 675 (2005).
  28. N.A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys. Cond. Matt. 20, 434203 (2008).
  29. J.P. Hirth and J. Lothe, Theory of Dislocations, Reprint Edition, Krieger Pub Co (1991).
  30. E.L. Ivchenko and G.E. Pikus, Superlattices and Other Heterostructures. Symmetry and Optical Phenomena, Springer, Berlin (1995).
  31. H. Imamura, P. Bruno, and Y. Utsumi, Phys. Rev. B 69, 121303 (2004).
  32. S.-X. Wang, H.-R. Chang, and J. Zhou, Phys. Rev. B 96, 115204 (2017).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences