Изучение процессов дополнительной генерации турбулентности в двухфазных потоках с крупными частицами
- Autores: Вараксин А.Ю.1, Мочалов А.А.1, Кукшинов Н.В.2
 - 
							Afiliações: 
							
- Объединенный институт высоких температур РАН
 - Московский государственный технический университет им. Н.Э. Баумана
 
 - Edição: Volume 62, Nº 5 (2024)
 - Páginas: 787–791
 - Seção: Short Communications
 - URL: https://transsyst.ru/0040-3644/article/view/682252
 - DOI: https://doi.org/10.31857/S0040364424050155
 - ID: 682252
 
Citar
Texto integral
Resumo
Продемонстрирована принципиальная возможность изучения процесса дополнительной генерации турбулентности в потоках с крупными частицами в рамках модели, основанной на системе осредненных по Рейнольдсу уравнений Навье–Стокса (RANS). Выполнены расчеты дополнительной генерации турбулентности в восходящем воздушном потоке с крупными частицами. Проведено сравнение результатов расчета с имеющимися экспериментальными данными с учетом реальных (истинных) значений массовой концентрации частиц.
Texto integral
Sobre autores
А. Вараксин
Объединенный институт высоких температур РАН
							Autor responsável pela correspondência
							Email: varaksin_a@mail.ru
				                					                																			                												                	Rússia, 							г. Москва						
А. Мочалов
Объединенный институт высоких температур РАН
														Email: varaksin_a@mail.ru
				                					                																			                												                	Rússia, 							г. Москва						
Н. Кукшинов
Московский государственный технический университет им. Н.Э. Баумана
														Email: varaksin_a@mail.ru
				                					                																			                												                	Rússia, 							г. Москва						
Bibliografia
- Вараксин А.Ю. Воздушные и огненные концентрированные вихри: физическое моделирование (обзор) // ТВТ. 2016. Т. 54. № 3. С. 430.
 - Вараксин А.Ю. Воздушные торнадоподобные вихри: математическое моделирование // ТВТ. 2017. Т. 55. № 2. С. 291.
 - Вараксин А.Ю. Двухфазные потоки с твердыми частицами, каплями и пузырями: проблемы и результаты исследований (обзор) // ТВТ. 2020. Т. 58. № 4. С. 646.
 - Вараксин А.Ю. Гидрогазодинамика и теплофизика двухфазных потоков с твердыми частицами, каплями и пузырями // ТВТ. 2023. Т. 61. № 6. С. 926.
 - Eaton J.K. Two-way Coupled Turbulence Simulations of Gas-particle Flows Using Point-Particle Tracking // Int. J. Multiphase Flow. 2009. V. 35. P. 792.
 - Kuerten J.G.M. Point-particle DNS and LES of Particle-laden Turbulent Flow – A State-of-the-Art Review // Flow Turbul. Combust. 2016. V. 97. P. 689.
 - Elghobashi S. Direct Numerical Simulation of Turbulent Flows Laden with Droplets of Bubbles // Annu. Rev. Fluid Mech. 2019. V. 51. P. 217.
 - Varaksin A.Yu., Ryzhkov S.V. Vortex Flows with Particles and Droplets (A Review) // Symmetry. 2022. V. 14. P. 2016.
 - Varaksin A.Y., Ryzhkov S.V. Mathematical Modeling of Gas-solid Two-phase Flows: Problems, Achievements and Perspectives (A Review) // Mathematics. 2023. V. 11. P. 3290.
 - Пахомов М.А., Терехов В.И. Влияние испарения капель на турбулентность газа и теплообмен при течении двухфазного потока за внезапным расширением трубы // ТВТ. 2016. Т. 54. № 3. С. 352.
 - P akhomov M.A., Terekhov V.I. The Effect of Droplets Thermophysical Properties on Turbulent Heat Transfer in a Swirling Separated Mist Flow // Int. J. Thermal Sci. 2020. V. 149. P. 106180.
 - Pakhomov M.A. RANS Simulation of Heat Transfer in a Mist Turbulent Flow over an Obstacle // Int. J. Thermal Sci. 2024. V. 199. P. 108913.
 - Tiwary S.S., Pal E., Bale S., Minocha N., Patwardhan A.W., Nandakumar K., Joshi J.B. Flow Past a Single Stationary Sphere. 1. Experimental and Numerical Techniques // Powder Technol. 2020. V. 365. P. 115.
 - Tiwary S.S., Pal E., Bale S., Minocha N., Patwardhan A.W., Nandakumar K., Joshi J.B. Flow Past a Single Stationary Sphere. 2. Regime Mapping and Effect of External Disturbances // Powder Technol. 2020. V. 365. P. 215.
 - Bagchi P., Balachandar S. Response of the Wake of an Isolated Particle to an Isotropic Turbulent Flow // J. Fluid Mech. 2004. V. 518. P. 95.
 - Wu J.-S., Faeth G.M. Sphere Wakes at Moderate Reynolds Numbers in a Turbulent Environment // AIAA J. 1994. V. 32. P. 535.
 - Wu J.-S., Faeth G.M. Effect of Ambient Turbulence Intensity on Sphere Wakes at Intermediate Reynolds Numbers // AIAA J. 1994. V. 33. P. 171.
 - Gai G.D., Hadjadj A., Kudriakov S., Thomine O. Particles-induced Turbulence: A Critical Review of Physical Concepts, Numerical Modelings, and Experimental Investigations // Theor. Appl. Mech. Lett. 2020. V. 10. P. 241.
 - Leskovec M., Lundell F., Innings F. Pipe Flow with Large Particles and Their Impact on the Transition to Turbulence // Phys. Rev. Fluids. 2020. V. 5. P. 112301.
 - Singh S., Potherat A., Pringle C.C.T., Bates I.R.J., Holdsworth M. Simultaneous Eulerian-Lagrangian Velocity Measurements of Particulate Pipe Flow in Transitional Regime // Rev. Sci. Instrum. 2020. V. 91. P. 095110.
 - Hogendoorn W., Chandra B., Poelma C. Suspension Dynamics in Transitional Pipe Flow // Phys. Rev. Fluids. 2021. V. 6. P. 064301.
 - Tsuji Y., Morikawa Y., Shiomi H. LDV Measurements of an Air-solid Two-phase Flow in a Vertical Pipe // J. Fluid Mech. 1984. V. 139. P. 417.
 - Зайчик Л.И., Вараксин А.Ю. Влияние следа за крупными частицами на интенсивность турбулентности несущего потока // ТВТ. 1999. Т. 37. № 4. С. 683.
 - Вараксин А.Ю., Мочалов А.А., Желебовский А.А. Характеристики течения в следе за крупной движущейся частицей // ТВТ. 2022. Т. 60. № 5. С. 701.
 - Yu Z.S., Xia Y., Guo Y., Lin J.Z. Modulation of Turbulence Intensity by Heavy Finite-size Particles in Upward Channel Flow // J. Fluid Mech. 2021. V. 913. P. A3.
 - Yang B., Peng C., Wang G.C., Wang L.P. A Direct Numerical Simulation Study of Flow Modulation and Turbulent Sedimentation in Particle-laden Downward Channel Flows // Phys. Fluids. 2021. V. 33. P. 093306.
 - Menter F.R. Two-equation Eddy-viscosity Turbulence Models for Engineering Applications // AIAA J. 1994. V. 32. P. 1598.
 
Arquivos suplementares
				
			
						
						
					
						
						
									





