Газовая ферментация – технология, меняющая правила игры. От молекулярной инженерии до биореакторов, моделирование и оптимизация процессов и аппаратов
- 作者: Низовцева И.Г.1, Чернушкин Д.В.2, Резайкин А.В.1,3, Свитич В.Е.1, Коренская А.Е.2, Микушин П.В.1,4, Стародумов И.О.1,3
 - 
							隶属关系: 
							
- Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
 - НПО Биосинтез
 - Уральский государственный медицинский университет
 - Московский физико-технический институт
 
 - 期: 卷 58, 编号 4 (2024)
 - 页面: 445-457
 - 栏目: Articles
 - ##submission.datePublished##: 07.08.2024
 - URL: https://transsyst.ru/0040-3571/article/view/686057
 - DOI: https://doi.org/10.31857/S0040357124040054
 - EDN: https://elibrary.ru/awlwdc
 - ID: 686057
 
如何引用文章
详细
На фоне растущей потребности в устойчивых источниках энергии, конструкционных материалах и качественном продовольствии для увеличивающегося населения планеты все большее внимание исследователей сосредоточено на возможности биотрансформации газовых субстратов – источников углерода и энергии для уникальных микроорганизмов, использующих метан, моно- и диоксид углерода, водород в качестве питания. Помимо чистого научного интереса к изучению фундаментальных задач математического моделирования в биофизике и биохимии микроорганизмов, направление характеризуется высокой практической значимостью результатов исследований. В фокусе внимания исследователей несколько классов задач, включающих как использование возможностей генной инженерии по оптимизации метаболизма как эффективного способа получения широкого спектра продуктов, так и ключевые биокаталитические ферменты, а также разработку новых инженерных решений для биореакторов, подразумевающих повышение управляемости, безопасности и эффективности процесса биосинтеза, снижение затрат на получение продукта. Для изучения сравнительной эффективности существующих и перспективных биореакторов, прежде всего в части массообменных характеристик аппаратов и оптимизации показателей расхода энергии, сегодня доступен значительный спектр инструментов, включающий как методы математического описания двухфазной газожидкостной среды и гидродинамических процессов, так и возможности суперкомпьютерных вычислений, использование алгоритмов машинного обучения и нейросетей – в работе рассмотрен ряд примеров и современных тенденций по развитию направления газовой ферментации.
全文:
作者简介
И. Низовцева
Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
							编辑信件的主要联系方式.
							Email: nizovtseva.irina@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Екатеринбург						
Д. Чернушкин
НПО Биосинтез
														Email: nizovtseva.irina@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Москва						
А. Резайкин
Уральский федеральный университет им. первого Президента России Б.Н. Ельцина; Уральский государственный медицинский университет
														Email: nizovtseva.irina@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Екатеринбург; Екатеринбург						
В. Свитич
Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
														Email: nizovtseva.irina@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Екатеринбург						
А. Коренская
НПО Биосинтез
														Email: nizovtseva.irina@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Москва						
П. Микушин
Уральский федеральный университет им. первого Президента России Б.Н. Ельцина; Московский физико-технический институт
														Email: nizovtseva.irina@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Екатеринбург; Москва						
И. Стародумов
Уральский федеральный университет им. первого Президента России Б.Н. Ельцина; Уральский государственный медицинский университет
														Email: nizovtseva.irina@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Екатеринбург; Екатеринбург						
参考
- English W.H. World population // Population. V. 1. № 2. P. 3.
 - Roser M., Ritchie H., Rosado P. Our world in data: food supply. 2013.
 - Raut N.A. et al. (ed.). 360-degree waste management, V. 1: fundamentals, agricultural and domestic waste, and remediation. Elsevier, 2023.
 - Agrawal A., Gopal K. Biomass production in food chain and its role at trophic levels. In: Springer.: Biomonitoring of Water and Waste Water, 2013.
 - Fomichev A.N. On scientific substantiation of concepts of ecological development // Social sciences and modernity. 2008. № 3. P. 142–150. [Фомичев А.Н. О научных обоснованиях концепций экологического развития // Общественные науки и современность. 2008. № 3. C. 142–150.]
 - Ravindra P. et al. Value-added food: single cell protein // Biotechnology advances. 2000. V. 18. № 6. P. 459–479.
 - Suman G. et al. Single cell protein production: a review // Int. J. Curr. Microbiol. App. Sci. 2015. V. 4. № 9. P. 251–262.
 - Ritala A. et al. Single cell protein – state-of-the-art, industrial landscape and patents 2001–2016 // Front. Microbiol. 2017. V. 8. P. 2009.
 - Tusé D., Miller M.W. Single‐cell protein: Current status and future prospects // Crit. Rev. Food Sci. Nutr. 1984. V. 19. № 4. P. 273–325.
 - Yáñez-Ruiz D.R., Martín-García A.I. Non-cow milk production: the greenhouse-gas emissions and climate change // Non-Bovine Milk and Milk Products. Academic Press, 2016. P. 15–38.
 - Leger D., Matassa S., Noor E., Shepon A., Milo R., Bar-Even A. Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops // PNAS. 2021. V. 118. № 26. P. e2015025118.
 - Bae J., Jin S., Kang S., Cho B.K., Oh M. Recent progress in the engineering of C1-utilizing microbes // Curr. Opin. Biotechnol. 2022. V. 78. P. 102836.
 - Guerrero-Cruz S., Vaksmaa A., Horn M. A., Niemann H., Pijuan M., Ho A. Methanotrophs: discoveries, environmental relevance, and a perspective on current and future applications // Front. Microbiol. 2021. V. 12. P. 678057.
 - Al Sayed A., Fergala A., Eldyasti A. Sustainable biogas mitigation and value-added resources recovery using methanotrophs intergrated into wastewater treatment plants // Rev. Environ Sci. Biotechnol. 2018. V. 17. P. 351–393.
 - Gupta A., Ahmad A., Chothwe D., Madhu M.K., Srivastava S., Sharma V.K. Genome-scale metabolic reconstruction and metabolic versatility of an obligate methanotroph Methylococcus capsulatus str. Bath // Peer J. 2019. V. 7. P. e6685.
 - Kalyuzhnaya M.G., Puri A.W., Lidstrom M.E. Metabolic engineering in methanotrophic bacteria // Metabolic Engineering. 2015. V. 29. P. 142–152.
 - Park S., Brown K.W., Thomas J.C. The effect of various environmental and design parameters on methane oxidation in a model biofilter // Waste Manag. Res. 2002. V. 20. № 5. P. 434–444.
 - Zhu Y., Koo C.W., Cassidy C.K. et al. Structure and activity of particulate methane monooxygenase arrays in methanotrophs // Nat. Commun. 2022. V. 13. № 1. P. 5221.
 - Smith T.J., Murrell J.C. Chapter nine – mutagenesis of soluble methane monooxygenase. Academic Press. Elsevier: Methods in Enzymology, 2011.
 - Semrau J.D., DiSpirito A.A., Yoon S. Methanotrophs and copper // FEMS Microbiol. Rev. 2010. V. 34. № 4. P. 496–531.
 - Kenney G.E., Sadek M., Rosenzweig A.C. Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b // Metallomics. 2016. V. 8. № 9. P. 931–940.
 - Trotsenko Y.A., Murrell J.C. Metabolic aspects of aerobic obligate methanotrophy. advances in applied microbiology // Academic Press. 2008. V. 63. P. 183–229.
 - Khmelenina V.N., Colin Murrell J., Smith T.J., Trotsenko Y.A. Physiology and biochemistry of the aerobic methanotrophs. Springer.: Aerobic Utilization of Hydrocarbons, Oils and Lipids, 2018.
 - Dong-W. Choi, Kunz R.C., Boyd E.S., Semrau J.D., Antholine W.E., Han J.I. et al. The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH: quinone oxidoreductase complex from methylococcus capsulatus bath // J. Bacteriol. 2003. V. 185. № 19.
 - Xu B., Liu Y., Chen K., Wang L., Sagada G., Tegomo A.F. et al. Evaluation of methanotroph (Methylococcus capsulatus, Bath) bacteria meal (FeedKind®) as an alternative protein source for juvenile black sea bream, Acanthopagrus schlegelii // Front. Marine Sci. 2021. V. 8. P. 778301.
 - Lee H., Baek J.I., Lee J.Y., Jeong J., Kim H., Lee D.H. et al. Syntrophic co-culture of a methanotroph and heterotroph for the efficient conversion of methane to mevalonate // Metab. Eng. 2021. V. 67. P. 285–292.
 - Best D.J., Higgin I.J. Methane-oxidizing activity and membrane morphology in a methanolgrown obligate methanotroph // Methylosinus Trichosporium OB3b. 1981. V. 125. № 1. P. 73–84.
 - Ho A., de Roy K., Thas O. et al. The more, the merrier: heterotroph richness stimulates methanotrophic activity // ISME J. 2014. V. 8. № 8. P. 1747–1751.
 - Nguyen A.D., Hwang I.Y., Lee O.K., Kim D., Kalyuzhnaya M.G., Mariyana R. et al. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane // Metab. Eng. 2018. V. 47. P. 323–333.
 - Oshkin I.Y., Belova S.E., Khokhlachev N.S. et al. Molecular analysis of the microbial community developing in continuous culture of methylococcus sp. concept-8 on natural gas // Microbiology. 2020. V. 89. P. 551–559.
 - Sandoval J.M., Arenas F.A., Vásquez C.C. Glucose-6-phosphate dehydrogenase protects escherichia coli from tellurite-mediated oxidative stress // PLoS ONE. 2011.V. 6. № 9. P. e25573.
 - Boti M.A., Athanasopoulou K., Adamopoulos P.G., Sideris D.C., Scorilas A. Recent advances in genome-engineering strategies // Genes. 2023. V. 14. № 1. P. 129.
 - Makarova K.S., Koonin E.V. Annotation and classification of CRISPR-cas systems // Methods Mol. Biol. 2015. V. 1311. P. 47–75.
 - Ledford H., Callaway E. Pioneers of revolutionary CRISPR gene editing win chemistry Nobel // Nature. 2020. V. 586. № 7829. P. 346–347.
 - Li C., Brant E., Budak H., Zhang B. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement // J. Zhejiang Univ. Sci. B. 2022. V. 22. № 4. P. 253–284.
 - Zhang D., Zhang Z., Unver T., Zhang B. CRISPR/Cas: A powerful tool for gene function study and crop improvement // J Adv Res. 2020. V. 29. P. 207–221.
 - Javed M.R., Noman M., Shahid M., Ahmed T., Khurshid M., Rashid M.H. et al. Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells // Microbiol. Res. 2019. V. 219. P. 1–11.
 - Lakhawat S.S., Malik N., Kumar V., Kumar S., Sharma P.K. Implications of CRISPR-Cas9 in developing next generation biofuel: a mini-review // Curr. Protein Pept. Sci. 2022. V. 23. № 9. P. 574–584.
 - Chisti M.Y., Moo-Young M. Airlift reactors: characteristics, applications and design considerations // Chem. Eng. Commun. 1987. V. 60. № 1–6. P. 195–242.
 - Warnecke H.J., Geisendörfer M., Hempel D.C. Mass transfer behaviour of gas‐liquid jet loop reactors // Chem. Eng. Technol. 1988. V. 11. № 1. P. 306–311.
 - Joshi J.B. et al. Sparged loop reactors // Can. J. Chem. Eng. 1990. V. 68. № 5. P. 705–741.
 - Olsen D.F. et al. Optimal operating points for SCP production in the U-loop reactor // IFAC Proc. Vol. 2010. V. 43. № 5. P. 499–504.
 - Petersen L.A.H. et al. Mixing and mass transfer in a pilot scale U‐loop bioreactor // Biotechnol. Bioeng. 2017. V. 114. № 2. P. 344–354.
 - Prado-Rubio O. A., Jørgensen J. B., Jørgensen S.B. Systematic model analysis for single cell protein (SCP) production in a U-loop reactor // Comp. Aided Chem. Eng. Elsevier, 2010. V. 28. P. 319–324.
 - Oosterhuis N.M.G., Junne S. Design, applications, and development of single‐use bioreactors // Bioreactors: Design, Operation and Novel Applications. 2016. P. 261–294.
 - Bonvillani P. et al. Theoretical and experimental study of the effects of scale-up on mixing time for a stirred-tank bioreactor // Braz. J. Chem. Eng. 2006. V. 23. P. 1–7.
 - Petersen L.A.H. et al. Modeling and system identification of an unconventional bioreactor used for single cell protein production // Chem. Eng. J. 2020. V. 390. P. 124438.
 - Hu W.S. Cell culture bioreactors // Cell Cult. Bioproc. Eng. Sec. Ed. CRC Press, 2020. P. 279–303.
 - Diez V. et al. A novel jet-loop anaerobic filter membrane bioreactor treating raw slaughterhouse wastewater: Biological and filtration processes // Chem. Eng. J. 2021. V. 408. P. 127288.
 - Moo-Young M., Chisti Y. Bioreactor applications in waste treatment // Resources, Conserv. Recycl. 1994. V. 11. № 1–4. P. 13–24.
 - Handler R.M. et al. Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstock // Indust. Eng. Chem. Res. 2016. V. 55. № 12. P. 3253–3261.
 - Teixeira L.V., Moutinho L.F., Romão‐Dumaresq A.S. Gas fermentation of C1 feedstocks: commercialization status and future prospects // Biofuels, Bioprod. Biorefin. 2018. V. 12. № 6. P. 1103–1117.
 - Guo B. et al. A natural gas fermentation bacterial meal (FeedKind®) as a functional alternative ingredient for fishmeal in diet of largemouth bass, Micropterus Salmoides // Antioxidants. 2022. V. 11. № 8. P. 1479.
 - Banks M. et al. Industrial production of microbial protein products // Curr. Opin. Biotechnol. 2022. V. 75. P. 102707.
 - Rønn M. et al. Evaluation of nutritional quality for weaner piglets of a new methanotrophic microbial cell-derived protein feed // Animal Feed Sci. Technol. 2022. V. 294. P. 115498.
 - Paglianti A. Recent innovations in turbulent mixing with static elements // Recent Patents Chem. Eng. 2008. V. 1. № 1. P. 80–87.
 - Starodumov I. et al. Measurement of mass transfer intensity in gas–liquid medium of bioreactor circuit using the thermometry method // Fluids. 2022. V. 7. № 12. P. 366.
 - Aroniada M. et al. Estimation of volumetric mass transfer coefficient (kLa) –Review of classical approaches and contribution of a novel methodology // Biochem. Eng. J. 2020. V. 155. P. 107458.
 - Ho D. et al. Enhancing gas–liquid volumetric mass transfer coefficient // J. Indust. Eng. Chem. 2020. V. 87. P. 1–17.
 - Abbasian-arani M., Hatamipour M.S., Rahimi A. Experimental determination of gas holdup and volumetric mass transfer coefficient in a jet bubbling reactor // Chinese J. Chem. Eng. 2021. V. 34. P. 61–67.
 - Richard H. et al. C1-proteins prospect for production of industrial proteins and protein-based materials from methane // Algal Bioref. Circular Bioecon. CRC Press, 2022. P. 251–276.
 - Kalyuzhnaya M.G., Gomez O.A., Murrell J.C. The methane-oxidizing bacteria (methanotrophs) // Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. 2019. P. 245–278.
 - León-Becerril E., Maya-Yescas R. Axial variation of mass transfer volumetric coefficients in bubble column bioreactors // Chem. Prod. Process Modeling. 2010. V. 5. № 1.
 - Rahimi M.J. et al. Computational fluid dynamics study of full-scale aerobic bioreactors: Evaluation of gas–liquid mass transfer, oxygen uptake, and dynamic oxygen distribution // Chem. Eng. Res. Design. 2018. V. 139. P. 283–295.
 - Nizovtseva I.G. et al. Simulation of two‐phase air–liquid flows in a closed bioreactor loop: Numerical modeling, experiments, and verification // Math. Methods Appl. Sci. 2022. V. 45. № 13. P. 8216–8229.
 - Charles M. Fermentation scale-up: problems and possibilities // Trends Biotechnol. 1985. V. 3. № 6. P. 134–139.
 - Finkler A.T.J. et al. A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates // Biochem. Eng. J. 2021. V. 166. P. 107854.
 - Nizovtseva I.G. et al. Influence of the gas–liquid non-equilibrium mediastructure on the mass transfer dynamics in biophysical processes // Smart Mater. Struct. 2023. V. 33. № 1. P. 015028.
 - Abu-Reesh I., Kargi F. Biological responses of hybridoma cells to hydrodynamic shear in an agitated bioreactor // Enzyme Microb. Technol. 1991. V. 13. № 11. P. 913–919.
 - Sharma C., Malhotra D., Rathore A.S. Review of computational fluid dynamics applications in biotechnology processes // Biotechnol. Prog. 2011. V. 27 № 6. P. 1497–1510.
 - Odeleye O.A. et al. On the fluid dynamics of a laboratory scale single-use stirred bioreactor // Chem. Eng. Sci. 2014. V. 111 № 100. P. 299–312.
 - Yang S.-T. (Ed.). Bioprocessing for Value-added Products from Renewable Resources: New Technologies and Applications. Elsevier, 2011.
 - Ma N., Mollet M., Chalmers J.J. Aeration, mixing and hydrodynamics in bioreactors, Encyclopedia of cell technology. Wiley, New York, 2003.
 - Schmalzriedt S., Jenne M., Mauch K., Reuss M. Integration of physiology and fluid dynamics, in: U.S. von Stockar (Ed.), Process Integration in Biochemical Engineering, Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg, 2003. V. 80. P. 19–68.
 - Amer M., Feng Y., Ramsey D.J. Using CFD simulations and statistical analysis to correlate oxygen mass transfer coefficient to both geometrical parameters and operating conditions in a stirred-tank bioreactor // Biotechnol Prog. 2019. V. 35. № 3. P 1–14.
 - Kaiser C.S. et al. Engineering characteristics of a single-use stirred bioreactor at bench-scale: the mobius cell ready 3L bioreactor as a case study // Eng. Life Sci. 2011. V. 11. № 4. № 359–368.
 - Maltby R., Tian S., Chew Y.M.J. Computational studies of a novel magnetically driven single-use technology bioreactor: A comparison of mass transfer models // Chem. Eng. Sci. 2018. V. 187. P. 157–173.
 - Martín M., Montes F.J., Gal´an M.A. On the contribution of the scales of mixing to the oxygen tansfer in stirred tank // Chem. Eng. 2008. V. 145. № 2. P. 232–241.
 - Marques M.P.C., Cabral J.M.S., Fernandes P.J. Bioprocess scale-up: quest for the parameters to be used as criterion to move from microreactors to lab-scale // Chem. Technol. Biotechnol. 2010. V. 85. № 9. P. 1184–1198.
 - Delafosse A. et al. Comparison of hydrodynamics in standard stainless steel and single-use bioreactors by means of an Euler-Lagrange approach // Chem. Eng. Sci. 2018. V. 180. P. 52– 64.
 - Nizovtseva I. et al. Simulation of two‐phase air–liquid flows in a closed bioreactor loop: Numerical modeling, experiments, and verification // Math. Methods Appl. Sci. 2022. V. 45. № 13. P. 8216–8229.
 - Haringa C. et al. Euler-Lagrange analysis towards representative down-scaling of a 22 m3 aerobic S. cerevisiae fermentation // Chem. Eng. Sci. 2017. V. 170. P. 653–669.
 - Amer M., Feng Yu., Ramsey J.D. Using CFD simulations and statistical analysis to correlate oxygen mass transfer coefficient to both geometrical parameters and operating conditions in a stirred-tank bioreactor // Biotechnol. Prog. 2019. V. 35. № 3. P. e2785.
 - Moilanen P. et al. Modelling mass transfer in an aerated 0.2 m3 vessel agitated by Rushton, Phasejet and Combijet impellers // Chem.Eng. V. 0142. № 1. P. 95–108.
 - Li X., Scott K., Kelly W.J., Huang Z. Development of a computational fluid dynamics model for scaling-up ambr bioreactors, biotechnol. // Bioprocess Eng. 2018. V. 23. P. 710–725.
 - Sanyal J., Marchisio L.D., Fox O.R., Dhanasekharan K. On the comparison between population balance models for CFD simulation of bubble columns // Ind. Eng. Chem. Res. 2005. V. 44. № 14. P. 5063–5072.
 - Sajjadi, Baharak, Raman, et al. Review on gas-liquid mixing analysis in multiscale stirred vessel using CFD // Rev. Chem. Eng. 2012. V. 28. № 2–3. P. 171–189.
 - Villiger T.K. et al. Experimental and CFD physical characterization of animal cell bioreactors: From micro-to production scale // Biochem. Eng. J. 2018. V. 131. P. 84–94.
 - Witz C., Treffer D., Hardiman T., Khinast J. Local gas holdup simulation and validation of industrial-scale aerated bioreactors // Chem. Eng. Sci. 2016. V. 152. P. 636–648.
 - Shu S., Zhang J., Yang N. GPU-accelerated transient lattice Boltzmann simulation of bubble column reactors // Chem. Eng. Sci. 2020. V. 214. P. 115436.
 - Thomas J.A. et al. A mechanistic approach for predicting mass transfer in bioreactors // Chem. Eng. Sci. V. 237. 2021. P. 116538.
 
补充文件
				
			
						
						
						
						
					






