Extraction of U(VI), Th(IV), and Lanthanides(III) from Nitric Acid Solutions with Mixtures of Diphenyl-N,N-dioctylcarbamoylmethylphosphine Oxide and Lithium Bis[(trifluoromethyl)sulfonyl]imide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The extraction of U(VI), Th(IV), and lanthanide(III) ions with mixtures of diphenyl-N,N-dioctylcarbamoylmethylphosphine oxide (Ph2Oct2) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTf2N) in dodecane containing 10% octanol was studied. A synergistic effect was discovered during the extraction of metal ions with such mixtures. When extracting Ln(III) from solutions of 3 mol/l HNO3, the DLn values in the system with Ph2Oct2–LiTf2N are more than three orders of magnitude higher than when extracting with a solution of Ph2Oct2. The stoichiometry of the extracted complexes was determined, and the effect of HNO3 concentration on the extraction of metal ions was studied. It has been established that actinide and lanthanide(III) ions are extracted with a mixture of Ph2Oct2 and LiTf2N from nitric acid solutions via a cation-exchange mechanism.

Texto integral

Acesso é fechado

Sobre autores

A. Turanov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: karan@iptm.ru
Rússia, ul. Akademika Osipyana 2, Chernogolovka, Moscow oblast, 142432

V. Karandashev

Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences

Email: karan@iptm.ru
Rússia, ul. Akademika Osipyana 6, Chernogolovka, Moscow oblast, 142432

Bibliografia

  1. Myasoedov B.F., Kalmykov S.N. // Mendeleev Commun. 2015. Vol. 25. N 5. P. 319. https://doi.org/ 10.10016/j.mencom.2015.09.001
  2. Horwitz E.P., Martin K.A., Diamond H., Kaplan L. // Solvent Extr. Ion Exch. 1986. Vol. 4. N 3. P. 449. https://doi.org/10.1080/07366298608917877
  3. Чмутова М.К., Литвина М.Н., Прибылова Г.А. Иванова Л.А., Смирнов И.В., Шадрин А.Ю, Мясоедов Б.Ф. // Радиохимия. 1999. Т. 41. № 4. С. 331.
  4. Аляпышев М.Ю., Бабаин В.А., Устынюк Ю.А. // Успехи химии. 2016. Т. 85. № 9. С. 943–961; Alyapyshev M. Yu., Babain V.A., Ustynyuk Yu.A. // Russ. Chem. Rev. 2016. Vol. 85. N 9. P. 943. https://doi.org/10.1070/RCR4588
  5. Chmutova M.K., Litvina M.N., Nesterova N.P., Myasoedov B.F., Kabachnik M.I. // Solvent Extr. Ion Exch. 1992. Vol. 10. P. 439.
  6. Смирнов И.В. // Радиохимия. 2007. Т. 49. № 1. С. 40.
  7. Rais J., Tachimori S. // J. Radioanal. Nucl. Chem. Lett. 1994. Vol. 188. N 2. P. 157.
  8. Smirnov V.I., Babain V.A., Shadrin A.Yu., Efremova T.I., Bondarenko N.A., Herbst R.S., Peterman D.R., Todd T.A. // Solvent Extr. Ion Exch. 2005. Vol. 23. N 1. P. 1.
  9. Makrlik E., Vanura P., Selucky P. // J. Radioanal. Nucl. Chem. 2010. Vol. 283. P. 571.
  10. Riano S., Foltova S.S., Binnemans K. // RSC Adv. 2020. Vol. 10. P. 307. doi: 10.1039/c9ra08996
  11. Iqbal M., Waheed K., Rahat S.B., Mehmood T., Lee M.S. // J. Radioanal. Nucl. Chem. 2020. Vol. 325. P. 1. doi: 10.1007/s10967-020-07199-1
  12. Atanassova M. // J. Mol. Liq. 2021. Vol. 343. ID 117530. https://doi.org/10.1016/j.molliq.2021.117530
  13. Белова В.В. // Радиохимия. 2021. Т. 63. № 1. С. 3; Belova V.V. // Radiochemistry. 2021. Vol. 63. N 1. Р. 1. https://doi.org/10.1134/S106636222101001X
  14. Sun T., Zhang Y., Wu Q., Chen J., Xia L., Xu C. // Solvent Extr. Ion Exch. 2017. Vol. 35. P. 408. https://doi.org/10.1080/07366299.2017.1379142
  15. Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2013. Т. 55. № 4. С. 314; Turanov A.N., Karandashev V.K., Yarkevich A.N. // Radiochemistry. 2013. Vol. 55. N 4. P. 382. https://doi.org/10.1134/S1066362213040073
  16. Turanov A.N., Karandashev V.K., Sharova E.V., Artyushin O.I., Kostikova G.V., Fedoseev A.M. // Radiochim. Acta. 2023. Vol. 111. P. 602.
  17. Прибылова Г.А., Смирнов И.В., Новиков А.П. // Радиохимия. 2012. Т. 54. № 5. С. 435.
  18. Pribilova G., Smirnov I., Novikov A. // J. Radioanal. Nucl. Chem. 2012. Vol. 295. P. 83.
  19. Gaillard C., Boltoeva M., Billard I., Georg S., Mazan V., Ouadi A., Ternova D., Henning C. // ChemPhysChem. 2015. Vol. 16. P. 2653. https://doi.org/ 10.1002/cphc.201500283
  20. Туранов А.Н., Карандашев В.К., Харитонов А.В., Лежнев А.Н., Сафронова З.В., Яркевич А.Н., Цветков Е.Н. // ЖОХ. 1999. Т. 69. N 7. С. 1109; Turanov A.N., Karandashev V.K., Kharitonov A.N., Lezhnev A.N., Safronova Z.V., Yarkevich A.N. Tsvetkov E.N. // Russ. J. Gen. Chem. 1999. Vol. 69. N 7. P. 1068.
  21. Binnemans K. // Chem. Rev. 2007. Vol. 107. P. 2593. https://doi.org/ 10.1021/cr050979c
  22. Туранов А.Н., Карандашев В.К., Костикова Г.В., Федосеев А.М. // Радиохимия. 2023. Т. 65. № 4. С. 310.
  23. Чмутова М.К., Литвина М.Н., Прибылова Н.П., Нестерова Н.П., Клименко В.Е., Мясоедов Б.Ф. // Радиохимия. 1995. Т. 37. № 5. С. 430.
  24. Horwitz E.P., Diamond H., Martin K.A., Chiarizia R. // Solvent Extr. Ion Exch. 1987. Vol. 5. P. 419.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1 Extraction of Th(IV), U(VI) and Eu(III) from 3 mol/L HNO3 solutions by isomolar mixtures of CMFOs Ph2Oct2 and LiTf2N in dodecane containing 10% octanol. [Ph2Oct2] + + [LiTf2N] = 0.02 mol/L for Th(IV) and U(VI) extraction and 0.05 mol/L for Eu(III) extraction.s

Baixar (201KB)
3. Fig. 2 Distribution coefficients of Ln(III) during extraction from 3 mol/L HNO3 solution with 0.05 mol/L KMFO Ph2Oct2 solutions in dodecane containing 10% octanol (2) and in dodecane containing 10% octanol in the presence of 0.05 mol/L LiTf2N (1).

Baixar (51KB)
4. Fig. 3 Dependence of the distribution coefficients of Th(IV) (1), U(VI) (2), Pr(III) (3), Eu(III) (4), Ho(III) (5) and Lu(III) (6) on the concentration of Ph2Oct2 in dodecane containing 10% octanol and 0.025 mol/L LiTf2N, during extraction from 3 mol/L HNO3 solution.

Baixar (187KB)
5. Fig. 4 Dependence of the distribution coefficients of Th(IV) (1), U(VI) (2), Eu(III) (3), Ho(III) (4), Tm(III) (5) and Lu(III) (6) on the concentration of LiTf2N in dodecane containing 10% octanol and 0.01 (1), 0.02 (2) and 0.05 (3-6) mol/L Ph2Oct2, when extracted from 3 mol/L HNO3 solution.

Baixar (195KB)
6. Fig. 5 Dependence of Ln(III) distribution coefficients on HNO3 concentration in the aqueous phase during extraction with solutions of a mixture of 0.025 mol/L KMFO Ph2Oct2 and 0.025 mol/L LiTf2N in dodecane containing 10% octanol.

Baixar (209KB)
7. Fig. 6 Distribution coefficients of Ln(III) during extraction from 3 mol/L HNO3 (2) and 3 mol/L HCl (1) solution with solutions of a mixture of 0.025 mol/L KMFO Ph2Oct2 and 0.025 mol/L LiTf2N in dodecane containing 10% octanol.

Baixar (145KB)
8. Supplementary
Baixar (807KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024