Моноциты/макрофаги как один из источников миофибробластов при развитии фиброза тканей: роль некодирующих РНК

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В последние годы все больше внимания уделяется изучению роли эпигенетических механизмов в развитии и прогрессировании иммуновоспалительных заболеваний, сопровождающихся развитием фиброза. В отличие от генетических изменений, сохраняющихся на протяжении всей жизни организма, эпигенетические модификации крайне динамичны и могут отличаться как в разных клеточных популяциях, так и в одной и той же клетке в зависимости от стадии дифференцировки и микроокружения. В обзоре обобщены сведения о потенциальной роли ключевых эпигенетических факторов, в частности некодирующих РНК, в процессе дифференцировки циркулирующих моноцитов костномозгового происхождения в миофибробласты, клеточные медиаторы фиброза. Благодаря высокой пластичности и способности к фенотипической трансформации моноциты и макрофаги являются важнейшими участниками тканевого гомеостаза и играют ключевую роль при развитии фиброза на всех этапах восстановления ткани – от воспаления до ремоделирования.

Полный текст

Доступ закрыт

Об авторах

О. В. Балан

Институт биологии – обособленное подразделение Карельского научного центра Российской академии наук

Автор, ответственный за переписку.
Email: ovbalan@mail.ru
Россия, Петрозаводск, 185910

И. Е. Малышева

Институт биологии – обособленное подразделение Карельского научного центра Российской академии наук

Email: ovbalan@mail.ru
Россия, Петрозаводск, 185910

О. М. Федоренко

Институт биологии – обособленное подразделение Карельского научного центра Российской академии наук

Email: ovbalan@mail.ru
Россия, Петрозаводск, 185910

Список литературы

  1. Antar S.A., Ashour N.A., Marawan M.E., Al-Karmala-wy A.A. Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms24044004
  2. Winn T.A. Cellular and molecular mechanisms of fibrosis // J. Pathol. 2008. V. 214. P. 199–210. https://doi.org/10.1002/path.2277
  3. Zeisberg M., Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis // Am. J. Physiol. Cell Physiol. 2013. V. 304. P. 216–225. https://doi.org/10.1152/ajpcell.00328.2012
  4. Frangogiannis N.G. Fibroblast-extracellular matrix interactions in tissue fibrosis // Curr. Pathobiol. Rep. 2016. V. 4. P. 11–18. https://doi.org/10.1007/s40139-016-0099-1
  5. Herrera J., Henke C.A., Bitterman P.B. Extracellular matrix as a driver of progressive fibrosis // J. Clin. Invest. 2018. V. 128 P. 45–53. https://doi.org/10.1172/JCI93557
  6. Zhang H., Zhou Y., Wen D., Wang J. Noncoding RNAs: Master regulator of fibroblast to myofibroblast transition in fibrosis // Int. J. Mol. Sci. 2023. V. 24. P. 1801. https://doi.org/10.3390/ijms24021801
  7. Kendall R.T., Feghali-Bostwick C.A. Fibroblasts in fibrosis: Novel roles and mediators // Front. Pharmacol. 2014. V. 5. https://doi.org/10.3389/fphar.2014.00123
  8. Di Carlo S.E., Peduto L. The perivascular origin of pathological fibroblasts // J. Clin. Invest. 2018. V. 128. P. 54–63. https://doi.org/10.1172/JCI93558
  9. Driskell R.R., Watt F.M. Understanding fibroblast heterogeneity in the skin // Trends Cell Biol. 2015. V. 25. P. 92–99. https://doi.org/10.1016/j.tcb.2014.10.001
  10. Mack M., Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis // Kidney Int. 2015. V. 87. P. 297–307. https://doi.org/10.1038/ki.2014
  11. LeBleu V.S., Neilson E.G. Origin and functional heterogeneity of fibroblasts // FASEB J. 2020. V. 34. P. 3519–3536. https://doi.org/10.1096/fj.201903188R
  12. Haider N., Bosca L., Zandbergen H.R. et al. Transition of macrophages to fibroblast-like cells in healing myocardial infarction // J. Am. Coll Cardiol. 2019. V. 74. P. 3124–3135. https://doi.org/10.1016/j.jacc.2019.10.036
  13. Evans S., Butler J.R., Mattila J.T., Kirschner D.E. Systems biology predicts that fibrosis in tuberculous granulomas may arise through macrophage-to-myofibroblast transformation // PLoS Comput. Biol. 2020. V. 16. https://doi.org/10.1371/journal.pcbi.1008520
  14. Torres A., Munoz K., Nahuelpan Y.R. et al. Intraglomerular monocyte/macrophage infiltration and macrophage-myofibroblast transition during diabetic nephropathy is regulated by the A2B adenosine receptor // Cells. 2020. V. 9. https://doi.org/10.3390/cells9041051
  15. Feng Y., Guo F., Xia Z. et al. Inhibition of fatty acid-binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition // Front. Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.566535
  16. Tang P.M., Zhang Y.Y., Xiao J. et al. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition // Proc. Natl Acad. Sci. USA. 2020. V. 117. P. 20741–20752. https://doi.org/10.1073/pnas.1917663117
  17. Yang F., Chang Y., Zhang C. et al. UUO induces lung fibrosis with macrophage-myofibroblast transition in rats // Int. Immunopharmacol. 2021. V. 93. https://doi.org/10.1016/j.intimp.2021.107396
  18. Wynn T.A., Barron L. Macrophages: Master regulators of inflammation and fibrosis // Semin. Liver Dis. 2010. V. 30. P. 245–257. https://doi.org/10.1055/s-0030-1255354
  19. Weber K.T., Sun Y., Bhattacharya S.K. et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart // Nat. Rev. Cardiol. 2013. V. 10. P. 15–26. https://doi.org/10.1038/nrcardio.2012.158
  20. Cortez-Retamozo V., Etzrodt M., Newton A. et al. Angiotensin II drives the production of tumor-promoting macrophages // Immunity. 2013. V. 38. Р. 296–308. https://doi.org/10.1016/j.immuni.2012.10.015
  21. Shapouri-Moghaddam A., Mohammadian S., Vazini H. et al. Macrophage plasticity, polarization, and function in health and disease // J. Cell Physiol. 2018. V. 233. P. 6425–6440. https://doi.org/10.1002/jcp.26429
  22. Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization // Front. Biosci. 2008. V. 13. P. 453–461. https://article.imrpress.com/bri/Landmark/articles/pdf/Landmark2692.pdf
  23. Xue J., Schmidt S.V., Sander J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation // Immunity. 2014. V. 40. P. 274–288. https://doi.org/10.1016/j.immuni.2014.01.006
  24. Yao Y., Xu X.H., Jin L. Macrophage polarization in physiological and pathological pregnancy // Front. Immunol. 2019. V. 10. https://doi.org/10.3389/fimmu.2019.00792
  25. Wynn T.A., Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis // Immunity. 2016. V. 44. P. 450–462. 10.1016/j.immuni.2016.02.015
  26. Kiseleva V., Vishnyakova P., Elchaninov A. et al. Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective // Inter. Immunopharmacology. 2023. V. 122. https://doi.org/10.1016/j.intimp.2023.110583
  27. Lech M., Anders H.J. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair // Biochim. Biophys. Acta. 2013. V. 1832. P. 989–997. https://doi.org/10.1016/j.bbadis.2012.12.001
  28. Lavine K.J., Epelman S., Uchida K. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart // Proc. Natl Acad. Sci. USA. 2014. V. 111. P. 16029–16034. https://doi.org/10.1073/pnas.140650811
  29. Stutchfield B.M., Antoine D.J., Mackinnon A.C. et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure // Gastroenterology. 2015. V. 149. P. 1896–1909. https://doi.org/10.1053/j.gastro.2015.08.053
  30. Laskin D.L., Malaviya R., Laskin J.D. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants // Toxicol. Sci. 2019. V. 168. P. 287–301. https://doi.org/10.1093/toxsci/kfy309
  31. Hou J., Shi J., Chen L. et al. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis // Cell Commun. Signal. 2018. V. 16. P. 89. https://doi.org/10.1186/s12964-018-0300-8
  32. Meng X.-M., Mak T.S.-K., Lan H.-Y. Macrophages in renal fibrosis. In renal fibrosis // Adv. Exp. Med. Biol. 2019. V. 1165. P. 285–303. https://doi.org/10.1007/978-981-13-8871-2_13
  33. Heidt T., Courties G., Dutta P. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction // Circ. Res. 2014. V. 115. P. 284–295. https://doi.org/10.1161/CIRCRESAHA.115.303567
  34. Usher M.G., Duan S.Z., Ivaschenko C.Y. et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mic // J. Clin. Investig. 2010. V. 120. P. 3350–3364. https://doi.org/10.1172/JCI41080
  35. Luther J.M., Fogo A.B. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis // Kidney Int. Suppl. 2022. V. 12. P. 63–68. https://doi.org/10.1016/j.kisu.2021.11.006
  36. Bucala R., Spiegel L.A., Chesney J. et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair // Mol. Med. 1994. V. 1. P. 71–81.
  37. Nikolic-Paterson D.J., Wang S., Lan H.Y. Macrophages promote renal fibrosis through direct and indirect mechanisms // Kidney Int. Suppl. 2014. V. 4. P. 34–38. https://doi.org/10.1038/kisup.2014.7
  38. Wang S., Meng X.M., Ng Y.Y. et al. TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis // Oncotarget. 2016. V. 7. P. 8809–8822. https://doi.org/10.18632/oncotarget.6604
  39. Vierhout M., Ayoub A., Naiel S. et al. Monocyte and macrophage derived myofibroblasts: Is it fate? A review of the current evidence // Wound. Repair Regen. 2021. V. 29. № 4. P. 548–562. https://doi.org/10.1111/wrr.12946
  40. Wang Y.Y., Jiang H., Pan J. et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury // J. Am. Soc. Nephrol. 2017. V. 28. P. 2053–2067. https://doi.org/10.1681/ASN.2016050573
  41. Little K., Llorian-Salvador M., Tang M. et al. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration // J. Neuroinflammation. 2020. V. 17. P. 355. https://doi.org/10.1186/s12974-020-02033-7
  42. Meng X.M., Wang S., Huang X.R. et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis // Cell Death Dis. 2016. V. 7. P. 2495. https://doi.org/10.1038/cddis.2016.402
  43. Lan H.Y., Chung A.C.K. Transforming growth factor-β and Smads // Contrib. Nephrol. 2011. V. 170. P. 75–82. https://doi.org/10.1159/000324949
  44. Skhirtladze C., Distler O., Dees C. et al. Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis // Arthritis Rheum. 2008. V. 58. P. 1475–1484. https://doi.org/10.1002/art.23436
  45. Tang P.M.-K., Zhou S., Li C.-J. et al. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring // Kidney Int. 2018. V. 93. P. 173–187. https://doi.org/10.1016/j.kint.2017.07.026
  46. Yang Y., Feng X., Liu X. et al. Fate alteration of bone marrow-derived macrophages ameliorates kidney fibrosis in murine model of unilateral ureteral obstruction // Nephrol. Dial Transplant. 2019. V. 34. P. 1657–1668. https://doi.org/10.1093/ndt/gfy381
  47. Yan J., Zhang Z., Yang J. et al. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis // J. Am. Soc. Nephrol. 2015. V. 26. P. 3060–3071. https://doi.org/10.1681/ASN.2014070717
  48. Jiao B., An C., Du H. et al. STAT6 deficiency attenuates myeloid fibroblast activation and macrophage polarization in experimental folic acid nephropathy // Cells. 2021. V. 10. https://doi.org/10.3390/cells10113057
  49. Huang X., He C., Hua X. et al. Oxidative stress induces monocyte-tomyofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma // Clin. Transl. Med. 2020. V. 10. https://doi.org/10.1002/ctm2.41
  50. Yang C., Zheng S.D., Wu H.J., Chen S.J. Regulatory mechanisms of the molecular pathways in fibrosis induced by microRNAs // Chin. Med. J. 2016. V. 129. P. 2365–2372. https://doi.org/10.4103/0366-6999.190677
  51. Liu R.H., Ning B., Ma X.E. et al. Regulatory roles of microRNA-21 in fibrosis through interaction with diverse pathways // Mol. Med. Rep. 2016. V. 13. P. 2359–2366. https://doi.org/10.3892/mmr.2016.4834
  52. Zhao S., Li W., Yu W.T. et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys // Theranostics. 2021. V. 11. P. 8660–8673. https://doi.org/10.7150/thno.62820
  53. Li D., Mao C., Zhou E. et al. MicroRNA-21 mediates a positive feedback on angiotensin II-induced myofibroblast transformation // J. Inflamm. Res. 2020. V. 13. P. 1007–1020. https://doi.org/10.2147/JIR.S285714
  54. Chen T., Li Z., Tu J. et al. MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells // FEBS Lett. 2011. V. 585. P. 657–663. https://doi.org/10.1016/j.febslet.2011.01.027
  55. Yuan R., Dai X., Li Y. et al. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-beta 2/Smad3 signaling // Mol. Med. Rep. 2021. V. 24. https://doi.org/10.3892/mmr.2021.12398
  56. Smyth A., Callaghan B., Willoughby C.E., O'Brien C. The role of miR-29 family in TGF-β driven fibrosis in glaucomatous optic neuropathy // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/10.3390/ijms231810216
  57. Bouhlel M.A., Derudas B., Rigamonti E. et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties // Cell Metab. 2007. V. 6. P. 137–143. https://doi.org/10.1016/j.cmet.2007.06.010
  58. Peng X., He F., Mao Y. et al. miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis // J. Mol. Endocrinol. 2022. V. 69. P. 315–327. https://doi.org/10.1530/JME-21-0019
  59. Yuan B.Y., Chen Y.H., Wu Z.F. et al. MicroRNA-146a-5p attenuates fibrosis-related molecules in irradiated and TGF-beta1-treated human hepatic stellate cells by regulating PTPRA-SRC signaling // Radiat. Res. 2019. V. 192. P. 621–629. https://doi.org/10.1667/RR15401.1
  60. Tu X., Zheng X., Li H. et al. MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells // Toxicol. Sci. 2015. V. 146. № 1. P. 157–169. https://doi.org/10.1093/toxsci/kfv081
  61. Zhao S., Xiao X., Sun S. et al. MicroRNA-30d/JAG1 axis modulates pulmonary fibrosis through Notch signaling pathway // Pathol. Res. Pract. 2018. V. 214. P. 1315–1323. https://doi.org/10.1016/j.prp.2018.02.014
  62. Cui H., Banerjee S., Xie N. et al. MicroRNA-27a-3p Is a negative regulator of lung fibrosis by targeting myofibroblast differentiation // Am. J. Respir. Cell Mol. Biol. 2016. V. 54. P. 843–852. https://doi.org/10.1165/rcmb.2015-0205OC
  63. Fabian M.R., Sonenberg N., Filipowicz W. Regulation of mRNA translation and stability by microRNAs // Ann. Rev. Biochem. 2010. V. 79. P. 351–379. https://doi.org/10.1146/annurev-biochem-060308-103103
  64. Li C., Liu Y.F., Huang C. et al. Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I // Am. J. Physiol. Renal. Physiol. 2020. V. 319. P. 93–105. https://doi.org/10.1152/ajprenal.00552.2019
  65. Zhu Y., Feng Z., Jian Z., Xiao Y. Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia // Mol. Med. Rep. 2018. V. 18. P. 3451–3460. https://doi.org/10.3892/mmr.2018.9327
  66. Yu C.-C., Liao Y.-W., Hsieh P.-L., Chang Y.-C. Targeting lncRNA H19/miR-29b/COL1A1 axis impedes myofibroblast activities of precancerous oral submucous fibrosis // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms22042216
  67. Zhang Y.Y., Tan R.Z., Yu Y., Niu Y.Y. LncRNA GAS5 protects against TGF-β-induced renal fibrosis via the Smad3/miRNA-142-5p // Am. J. Physiol. Renal Physiol. 2021. V. 321. № 4. P. 517–526. https://doi.org/10.1152/ajprenal.00085.2021
  68. Algeciras L., Palanca A., Maestro D. et al. Epigenetic alterations of TGF-β and its main canonical signaling mediators in the context of cardiac fibrosis // J. Mol. Cell Cardiol. 2021. V. 159. P. 38–47. https://doi.org/10.1016/j.yjmcc.2021.06.003
  69. Tang R., Wang Y.C., Mei X. LncRNA GAS5 attenuates fibroblast activation through inhibiting Smad3 signaling // Am. J. Physiol. Cell Physiol. 2020. V. 319. P. 105–115. https://doi.org/10.1152/ajpcell.00059.2020
  70. Fan Y., Zhao X., Ma J., Yang L. LncRNA GAS5 competitively combined with miR-21 regulates PTEN and influences EMT of peritoneal mesothelial cells via Wnt/β-Catenin signaling pathway // Front. Physiol. 2021. V. 12. https://doi.org/10.3389/fphys.2021.654951
  71. Zheng Q., Bao C., Guo W. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs // Nat. Commun. 2016. V. 7. https://doi.org/10.1038/ncomms11215
  72. Li C., Meng X., Wang L., Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway // Front Pharmacol. 2023. V. 14. https://doi.org/10.3389/fphar.2023.1092148
  73. Su P., Qiao Q., Ji G., Zhang Z. CircAMD1 regulates proliferation and collagen synthesis via sponging miR-27a-3p in P63-mutant human dermal fibroblasts // Differentiation. 2021. V. 119. P. 10–18. https://doi.org/10.1016/j.diff.2021.04.002

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025