On the possibility of studying the effect of magnetic reconnection in a laboratory astrophysical experiment using X-ray emission L-spectra of multiply charged ions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The paper considers the application of X-ray spectroscopy with high spatial resolution for investigation of magnetic reconnection in laboratory astrophysical experiments carried out on laser facilities of nano- and pico-second duration at moderate laser intensity on the target <1018 W/cm2. A brief overview of commonly used experimental schemes is given. We present atomic kinetic calculations for the spectra from the L-shells of Ne- and F-like iron ions (Fe, Z = 26), which demonstrate the high sensitivity of the spectra to changes in plasma parameters. An analysis of the range of applicability of various diagnostic approaches to assessing the electron temperature and laser plasma density is carried out. It is shown that transition lines in Ne-like ions are a universal tool for measuring plasma parameters, both in the region of laser interaction with the target and in the reconnection zone.

Толық мәтін

Рұқсат жабық

Авторлар туралы

М. Alkhimova

Joint Institute for High Temperature of RAS

Хат алмасуға жауапты Автор.
Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

S. Makarov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

I. Skobelev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

S. Ryazantsev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

E. Filippov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
Ресей, Moscow

Әдебиет тізімі

  1. G. H. Miller, Opt. Eng. 43, 2841 (2004).
  2. N. Fleurot, C. Cavailler, J. L. Bourgade, Fusion Eng. Des. 74, 147–154 (2005).
  3. S. G. Garanin, F. A. Starikov, R. A. Shnyagin, Opt. Spectrosc. 114, 851–858 (2013).
  4. M. Yamada, R. Kulsrud, H. Ji, Rev. Mod. Phys. 82, 603–664 (2010).
  5. P. Helander, L.-G. Eriksson, F. Andersson, Plasma Phys. Control. Fusion. 44, B247–B262 (2002).
  6. J. T. Gosling, Space Sci. Rev. 172, 187–200 (2012).
  7. Somov B. V., Plasma Astrophysics, Part II: Reconnection and Flares (Springer, 2006).
  8. M. Bárta, M. Karlický, R. Žemlička, Sol. Phys. 253, 173–189 (2008).
  9. X. Cheng, J. Zhang, Y. Liu, M. D. Ding, Astrophys. J. 732, L25 (2011).
  10. X. Cheng, Y. Li, L. F. Wan, M. D. Ding, P. F. Chen, J. Zhang, J. J. Liu, Astrophys. J. 866, 64 (2018).
  11. P. Pagano, D. H. Mackay, S. Poedts, Astron. and Astrophys. 554, A77 (2013).
  12. J. Lin, Y. ‐K. Ko, L. Sui, J. C. Raymond, G. A. Stenborg, Y. Jiang, S. Zhao, S. Mancuso, Astrophys. J. 622, 1251–1264 (2005).
  13. L. K. S. Daldorff, J. E. Leake, J. A. Klimchuk, Astrophys. J. 927, 196 (2022).
  14. А.Retinò, D. Sundkvist, A. Vaivads, F. Mozer, M. André, C. J. Owen, Nat. Phys. 3, 235–238 (2007).
  15. P. Louarn, N. Andre, C. M. Jackman, S. Kasahara, E. A. Kronberg, M. F. Vogt, Space Sci. Rev. 187, 181–227 (2015).
  16. J. Varela, V. Réville, A. S. Brun, P. Zarka, F. Pantellini, Astron. and Astrophys. 616, A182 (2018).
  17. V. Semenov, S. Dyadechkin, B. Punsly, Science 80, 305, 978–980 (2004).
  18. Y. Lyubarsky, Astrophys. J. 897, 1 (2020).
  19. M. Lyutikov, Monthly Not. Roy. Astron. Soc. 346, 540–554 (2003).
  20. M. Hesse, P. A. Cassak, J. Geophys. Res. Sp. Phys., in press, doi: 10.1029/2018JA025935.
  21. C. T. Russell, M. A. Saunders, J. L. Phillips, J. A. Fedder, J. Geophys. Res. 91, 1417 (1986).
  22. O. Price, G. H. Jones, J. Morrill, M. Owens, K. Battams, H. Morgan, M. Drückmuller, S. Deiries, Icarus 319, 540–557 (2019).
  23. Л. В. Франк, А.Г., Артемьев, А.В., Зеленый, ЖЭТФ 150, 807–825 (2016).
  24. S. Y. Bogdanov, G. V. Dreǐden, V. S. Markov, G. V. Ostrov-skaya, A. G. Frank, Plasma Phys. Reports 32, 1034–1046 (2006).
  25. N. Katz, J. Egedal, W. Fox, A. Le, J. Bonde, A. Vrublevskis, Phys. Rev. Lett. 104, 255004 (2010).
  26. W. Fox, F. Sciortino, A. v. Stechow, J. Jara-Almonte, J. Yoo, H. Ji, M. Yamada, Phys. Rev. Lett. 118, 125002 (2017).
  27. J. D. Hare, L. Suttle, S. V. Lebedev, N. F. Loureiro, et L., Phys. Rev. Lett. 118, 085001 (2017).
  28. А.Ishizawa, R. Horiuchi, Phys. Rev. Lett. 95, 045003 (2005).
  29. M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, S. Zenitani, Space Sci. Rev. 160, 3–23 (2011).
  30. S. V Bulanov, Plasma Phys. Control. Fusion. 59, 014029 (2017).
  31. K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, et al., Matter Radiat. Extrem. 6, doi: 10.1063/5.0065138 (2021).
  32. А. Г. Франк, Успехи физических наук. 53, 941–947 (2010).
  33. Y. H. Liu, P. Cassak, X. Li, M. Hesse, S. C. Lin, K. Genestreti, Commun. Phys. 2022 51, 5, 1–9 (2022).
  34. J. Qiu, W. Liu, N. Hill, M. Kazachenko, Astrophys. J. 725, 319–330 (2010).
  35. K. J. Trattner, J. S. Mulcock, S. M. Petrinec, S. A. Fuselier, Geophys. Res. Lett. 34, L03108 (2007).
  36. M. Yamada, J. Yoo, J. Jara-Almonte, H. Ji, R. M. Kulsrud, C. E. Myers, Nat. Commun. 5, doi: 10.1038/ncomms5774 (2014).
  37. É. Falize, C. Michaut, S. Bouquet, Astrophys. J. 730, 96 (2011).
  38. L. Willingale, P. M. Nilson, M. C. Kaluza, A. E. Dangor, et al., Phys. Plasmas. 17, doi: 10.1063/1.3377787 (2010).
  39. S. Bolaños, A. Sladkov, R. Smets, S. N. Chen, et al., J. Fuchs, Nat. Commun. 13, 6426 (2022).
  40. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Rev. Lett. 97, 255001 (2006).
  41. B. K. F. Young, A. L. Osterheld, D. F. Price, R. Shepherd, et al., Rev. Sci. Instrum. 69, 4049–4053 (1998).
  42. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Rev. Lett. 106, 215003 (2011).
  43. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Plasmas. 19, doi: 10.1063/1.3694119 (2012).
  44. M. Øieroset, T. D. Phan, R. Ergun, N. Ahmadi, et al., Phys. Plasmas. 28, doi: 10.1063/5.0072182 (2021).
  45. D. I. Pontin, E. R. Priest Magnetic reconnection: MHD theory and modelling (Springer International Publishing; vol. 19, 2022).
  46. Y. Kuramitsu, T. Moritaka, Y. Sakawa, T. Morita, et al., Nat. Commun. 9, 5109 (2018).
  47. W. Liu, Q. Chen, V. Petrosian, Astrophys. J. 767, 168 (2013).
  48. G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.- Y. Chang, K. Germaschewski, S. X. Hu, P. M. Nilson, Phys. Rev. Lett. 113, 105003 (2014).
  49. J. Zhong, Y. Li, X. Wang, J. Wang, Q. Dong, et al., Nat. Phys. 6, 984–987 (2010).
  50. W. Daughton, J. Scudder, H. Karimabadi, Phys. Plasmas. 13, doi: 10.1063/1.2218817 (2006).
  51. F. Ebrahimi, R. Raman, Phys. Rev. Lett. 114, 205003 (2015).
  52. K. Sakai, T. Moritaka, T. Morita, K. Tomita, et al., Sci. Rep. 12, 10921 (2022).
  53. Y. Kuramitsu, Y. Sakawa, J. N. Waugh, C. D. Gregory, T. Morita, S. Dono, H. Aoki, H. Tanji, B. Loupias, M. Koenig, N. Woolsey, H. Takabe, Astrophys. J. 707, L137–L141 (2009).
  54. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Plasmas 15, doi: 10.1063/1.2966115 (2008).
  55. Q.-L. Dong, S.-J. Wang, Q.-M. Lu, C. Huang, et al., Phys. Rev. Lett. 108, 215001 (2012).
  56. C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, O. L. Landen, J. P. Knauer, V. A. Smalyuk, Phys. Rev. Lett. 99, 055001 (2007).
  57. X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, et al., Phys. Plasmas 23, doi: 10.1063/1.4944928 (2016).
  58. А.Chien, L. Gao, S. Zhang, H. Ji, E. G. Blackman, et al., Nat. Phys. 192, 19, 254–262 (2023).
  59. J. P. Geindre, P. Audebert, A. Rousse, J. C. Gauthier, A. Y. Faenov, T. A. Pikuz, S. A. Pikuz, T. A. Shelkovenko, Phys. Scr. 53, 645–647 (1996).
  60. А.Y. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin, et al., Phys. Scr. 50, 333–338 (1994).
  61. S. A. Pikuz, I. Y. Skobelev, M. A. Alkhimova, G. V. Pokrovskii, et al., JETP Lett. 105, 13–17 (2017).
  62. S. N. Ryazantsev, A. S. Martynenko, M. V Sedov, I. Y. Skobelev, et al., Plasma Phys. Control. Fusion. 64, 105016 (2022).
  63. M. A. Alkhimova, A. Y. Faenov, I. Y. Skobelev, T. A. Pikuz, et al., Opt. Express. 25, 29501 (2017).
  64. E. D. Filippov, K. F. Burdonov, T. A. Pikuz, I. Y. Skobelev, Symmetry (Basel) 14, 1–21 (2022).
  65. E. D. Filippov, S. S. Makarov, K. F. Burdonov, W. Yao, et al., Sci. Rep. 11, 8180 (2021).
  66. E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, et al., Matter Radiat. Extrem. 8, 065602 (2023).
  67. V. M. Dyakin, A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Wolowski, E. Woryna, P. Parys, T. Pisarczyk, Quantum Electron. 25, 690–694 (1995).
  68. C. Y. Chien, J. C. Kieffer, O. Peyrusse, D. Gilles, M. Chaker, J. S. Coe, G. Mourou, Y. Beaudoin, Opt. Lett. 18, 1535 (1993).
  69. Z. Jiang, J. C. Kieffer, J. P. Matte, M. Chaker, O. Peyrusse, D. Gilles, G. Korn, A. Maksimchuk, S. Coe, G. Mourou, Phys. Plasmas 2, 1702–1711 (1995).
  70. V. A. Boiko, A. V. Vinogradov, S. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Sov. Laser Res. 6, 85–290 (1985).
  71. C. Kaur, S. Chaurasia, N. Singh, J. Pasley, S. Aggarwal, M. Mohan, Phys. Plasmas 26, doi: 10.1063/1.5051758 (2019).
  72. G. V. Brown, P. Beiersdorfer, D. A. Liedahl, K. Widmann, S. M. Kahn, E. J. Clothiaux, Astrophys. J. Suppl. Ser. 140, doi: 10.1086/339374 (2002).
  73. E. V. Marley, D. A. Liedahl, M. B. Schneider, R. F. Heeter, et al., Rev. Sci. Instrum. 89, 1–5 (2018).
  74. J. J. MacFarlane, I. E. Golovkin, P. R. Woodruff, D. R. Welch, B. V. Oliver, T. A. Melhorn, R. B. Campbell, T. A. Mehlhorn, R. B. Campbell Proc. Inert. Fusion Sci. Appl. (American Nucl. Soc. La Grange Park, IL, 1–4, 2003).
  75. E. D. Filippov, I. Y. Skobelev, G. Revet, S. N. Chen, B. Khiar, A. Ciardi, D. Khaghani, D. P. Higginson, S. A. Pikuz, J. Fuchs, Matter Radiat. Extrem. 4, doi: 10.1063/1.5124350 (2019).
  76. B. Khiar, G. Revet, A. Ciardi, K. Burdonov, et al., Phys. Rev. Lett. 123, 205001 (2019).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. (a) Magnetic field lines (solid arrows) and separatrices (dashed lines) in an X-point geometry forming regions of electron (pink) and ion (blue) diffusion; (b) example of a magnetic reconnection scheme in a laboratory experiment (corresponds to the scheme in Fig. 2a) [42], simulating the astrophysical case of plasmoid ejection during solar flares [47].

Жүктеу (234KB)
3. Fig. 2. Experimental setups for studying magnetic reconnection in laser-plasma experiments: (a) formation of a magnetic reconnection region due to the propagation of laser plasma in a constant external magnetic field perpendicular to the expansion axis; (b) formation of an X-type reconnection region in experiments with two counter-propagating plasma flows; (c) reconnection between self-generated magnetic fields of two plasma plumes; (d) capacitor target irradiated by laser pulses through a hole in the front plate to generate magnetic field interaction between loops connecting parts of the target.

Жүктеу (290KB)
4. Fig. 3. Calculated L-shell X-ray emission spectra for Fe ions using the PrismSPECT code: (a) L-spectrum of Fe calculated for given electron temperatures (eV) and densities (cm⁻³); (b) L-spectrum of Fe for Te = 125–400 eV and specified density. All intensities in both panels are normalized to the Ne-like line λ1 indicated in the figure.

Жүктеу (238KB)
5. Fig. 4. Simulation of the dependence of the fraction of (a) Ne-like and (b) F-like Fe ions on plasma electron temperature Te for various ion densities, assuming optically thin plasma.

Жүктеу (287KB)
6. Fig. 5. (a) Dependence of the intensity ratio of spectral components λ1 and λ2 corresponding to transitions 2p⁵3d–2p⁶ (1P1–1S0) and 2p⁵3d–2p⁶ (3D1–1S0) in the Ne-like Fe XVII ion on plasma density at fixed electron temperatures (eV); (b) Calculated line broadening profile at Å corresponding to the transition 2p⁵3d–2p⁶ (1P1–1S0) in Fe XVII depending on ion density. Calculation assumes optically thin plasma.

Жүктеу (239KB)
7. Fig. 6. Determination of plasma temperature from L-spectra of multicharged Fe ions: (a) Dependence of intensity ratio of λ1 and λ2 (2p⁵3d–2p⁶ transitions in Ne-like Fe XVII) on electron temperature at fixed ion density; (b) Dependence of intensity ratio of λ1 — 2p⁵3d–2p⁶ (1P1–1S0) in Fe XVII and λ5 — (2p⁴3d)⁴P3/2 –(2p⁵)²P1/2 in F-like Fe XVIII on plasma temperature for fixed ion densities Ni = 10¹⁸–10²² cm⁻³, assuming optically thin plasma.

Жүктеу (217KB)
8. Fig. 7. (a) Modeling of Ne- and Na-like transitions in Cu L-spectra within 9.0–9.6 Å using the PrismSPECT radiation-kinetics code for various sets of temperatures and densities; (b) Dependence of relative intensity of spectral lines λ1Cu and λ2Cu (as marked in panel a) on electron temperature, accounting for optical thickness (μm).

Жүктеу (226KB)

© The Russian Academy of Sciences, 2024